L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.
نویسنده
چکیده
Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste.
منابع مشابه
High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
BACKGROUND 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, produ...
متن کاملBiodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste
The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conv...
متن کاملRobust succinic acid production from crude glycerol using engineered Yarrowia lipolytica
BACKGROUND Integrating waste management with fuels and chemical production is considered to address the food waste problem and oil crisis. Approximately, 600 million tonnes crude glycerol is produced from the biodiesel industry annually, which is a top renewable feedstock for succinic acid production. To meet the increasing demand for succinic acid production, the development of more efficient ...
متن کاملCharacterization of Crude Glycerol from Biodiesel Production from Multiple Feedstocks
Glycerol is the principal by-product of biodiesel production. For each gallon of biodiesel produced, approximately 0.3 kg of crude glycerol accompanies. Such crude glycerol possesses very low value because of the impurities contained. As the demand and production of biodiesel grow exponentially, the utilization of the glycerol becomes an urgent topic. The make-up of crude glycerol varies depend...
متن کامل3-Hydroxypropionaldehyde production from crude glycerol by Lactobacillus diolivorans with enhanced glycerol uptake
Background In their quest for sustainable development and effective management of greenhouse gas emissions, our societies pursue a shift away from fossil-based resources towards renewable resources. With 95% of our current transportation energy being petroleum based, the application of alternative, carbon-neutral products-among them biodiesel-is inevitable. In order to enhance the cost structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 6 شماره
صفحات -
تاریخ انتشار 2015